Model-based plant-wide optimization of large-scale lignocellulosic bioethanol plants
نویسندگان
چکیده
Second generation biorefineries transform lignocellulosic biomass into chemicals with higher added value following a conversion mechanism that consists of: pretreatment, enzymatic hydrolysis, fermentation and purification. The objective of this study is to identify the optimal operational point with respect to maximum economic profit of a large scale biorefinery plant using a systematic model-based plantwide optimization methodology. The following key process parameters are identified as decision variables: pretreatment temperature, enzyme dosage in enzymatic hydrolysis, and yeast loading per batch in fermentation. The plant is treated in an integrated manner taking into account the interactions and trade-offs between the conversion steps. A sensitivity and uncertainty analysis follows at the optimal solution considering both model and feed parameters. ∗Corresponding author Email address: [email protected] (Gürkan Sin) Preprint submitted to Biochemical Engineering Journal March 20, 2017 It is found that the optimal point is more sensitive to feedstock composition than to model parameters, and that the optimization supervisory layer as part of a plantwide automation system has the following benefits: (1) increases the economical profit, (2) flattens the objective function allowing a wider range of operation without negative impact on profit, and (3) reduces considerably the uncertainty on profit.
منابع مشابه
Flexibility in wheat bioethanol plants
Bioethanol is mostly produced from wheat starch in Sweden. Due to the increasing wheat price it is no longer profitable to produce bioethanol from wheat. In this paper the conditions for converting a wheat bioethanol plant to a lignocellulosic bioethanol plant are studied. The most suitable lignocellulosic feedstock is investigated and soft wood chips are chosen based on bioethanol ...
متن کاملManipulation of plant architecture to enhance lignocellulosic biomass
BACKGROUND Biofuels hold the promise to replace an appreciable proportion of fossil fuels. Not only do they emit significantly lower amounts of greenhouse gases, they are much closer to being 'carbon neutral', since the source plants utilize carbon dioxide for their growth. In particular, second-generation lignocellulosic biofuels from agricultural wastes and non-food crops such as switchgrass ...
متن کاملA Switchgrass-based Bioethanol Supply Chain Network Design Model under Auto-Regressive Moving Average Demand
Switchgrass is known as one of the best second-generation lignocellulosic biomasses for bioethanol production. Designing efficient switchgrass-based bioethanol supply chain (SBSC) is an essential requirement for commercializing the bioethanol production from switchgrass. This paper presents a mixed integer linear programming (MILP) model to design SBSC in which bioethanol demand is under auto-r...
متن کاملSynergistic effects of 2A-mediated polyproteins on the production of lignocellulose degradation enzymes in tobacco plants
Cost-effective bioethanol production requires a supply of various low-cost enzymes that can hydrolyse lignocellulosic materials consisting of multiple polymers. Because plant-based enzyme expression systems offer low-cost and large-scale production, this study simultaneously expressed β-glucosidase (BglB), xylanase (XylII), exoglucanase (E3), and endoglucanase (Cel5A) in tobacco plants, which w...
متن کاملA spatially explicit whole-system model of the lignocellulosic bioethanol supply chain: an assessment of decentralised processing potential
BACKGROUND Lignocellulosic bioethanol technologies exhibit significant capacity for performance improvement across the supply chain through the development of high-yielding energy crops, integrated pretreatment, hydrolysis and fermentation technologies and the application of dedicated ethanol pipelines. The impact of such developments on cost-optimal plant location, scale and process compositio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017